Smart processing of data from permanent monitoring systems: innovations and needs (BRIMOS – EMASS)

Structural Assessment Monitoring and COntrol

Herman Van der Auweraer, Bart Peeters 5-th SAMCO Workshop, 26-27 Jan. 2004

Context Bridge Monitoring

- Permanent monitoring systems
 - Long-span cable-stayed and suspension bridges
 - Large investment
 - Motivated by insurance companies
 - Purpose
 - Design verification
 - Event recording
 - Archive
 - Serviceability
 - Health monitoring
 - Massive amounts of data
 - Smart processing
 - Management

Operational Modal Analysis Vasco da Gama Bridge

5-th SAMCO Workshop Vienna, January 26-27, 2004

Ambient Accelerations Modes BV1 and T2

Øresund Bridge: Continuous Monitoring System Cable Forces

Future: Stonecutters Bridge in Hong Kong

• Stonecutters Bridge (2007)

 WASHMS: wind and structural health monitoring system

- Wind
- Temperature
- Accelerations
- Strains
- Traffic loading
- Humidity, rainfall
- Displacement (by GPS)
- Corrosion
- TOTAL: 1114 channels !!!

From Real-time Displacements to FE Model validation

- Signal capturing and processing
 - Sensors
 - Sensor networks
 - Data transmission
 - Data processing
- Change detection
 - Signal based methods
 - Model based methods
 - Model comparison
 - Statistical Test
 - Discrimination of environmental effects
- Data management

- Smart Sensors
 - Use of MEMS
 - Optical sensors
 - Local digitization

© 2000, Stanford University

- Local processing (correction, calibration, preprocessing, FFT,)
- Fusion of data types: vibration, displacement, corrosion, GPS, video, environmental, static ...
- Gradual transition to advanced sensors (need-tohave basis) -> mixed mode support approach

MA SMARTEC

Sensors Optical Fibers

Technology

- Interferometry using 2 fibers
 - Mechanically coupled
 - Free reference fiber (temperature)
- Bragg gratings
 - Multiplexing
- Other
- Can offer added value
 - Quality / stability
 - Long-term reliability
 - Installation
- Parameters
 - Strain (static + dynamic)
 - Temperature
 - Humidity
 - Corrosion

© Smartec

- Bus-systems and wireless transmission
 - Sensor network architectures
 - Data bus systems (e.g. CDMA, SPDIF,...)
 - Wireless transmission (from analog to WLAN...)
- Critical Issues:
 - Absolute time synchronization (through WLAN, through GPS, by cable, by predictive correction...)
 - Data transmission performance
 - Distance versus Bit rate
 - Accuracy, resolution, drop-out...
 - Power consumption and supply (cable, battery, power "scavenging") [IMEC]
 - Research topic at LMS

- Breakthrough research in high-value sectors
 - Medical: IMEC Human++ program
 - Space: NASA shuttle and ISS
 - Aeronautics: on-board SHM, flutter detection
 - Earthquake alert and analysis (NEEES, E-defense...)
- Develop synergies, re-use results where possible
 - Other EC projects
 - EUREKA (FLITE...)
 - National
 - International

IMEC Human++ Program

IMEC Human++ Program

Example technology driver for Human++ Ambulatory EEG system

Channels: 24 Sample rate: 256Hz Resolution: 12 bit / sample Filtering Amplification FSK modulation Carrier: 868MHz Output power: -10dBm FEC: reed solomon Raw data rate: 76kbit/s Power consumption: 145mW Operational lifetime: 3 days on 4AA batteries

Samco

© imec 2004 Chris Van Hoof - Microsystems Department

IMEC Micro-sensor and Human++ Program

IMEC Micro-sensor and Human++ Program

IMEC Micro-sensor and Human++ Program

5-th SAMCO Workshop Vienna, January 26-27, 2004

Example: Aerospace Wireless Communication

- MicroTAU, wireless tri-axial accelerometer
 - NASA Space Shuttle
 - To detect vibration of payloads during launch and landing
 - fs = 250 Hz
 - 9 min memory
- Wireless?
 - Wireless data synchronization between units (±30µs @ 250Hz)
 - Wireless data download
- Other programs:
 - IWIS (synch. 300 ns) -> ISS
 - WAIS (synch. 300 ns) -> Naval Air
 - WATS (synch. (±10µs) -> USAF

© INVOCON

Sensor Data Collection Topologies

Sequoia Triaxial Acceleration Computer (SeTAC) [Italy]

Adding data processing capabilities

5-th SAMCO Workshop Vienna, January 26-27, 2004

Wireless Communication

WiMMS

- Wireless Modular Monitoring System
- The John A. Blume Earthquake Engineering Center, Stanford University
- New technologies
 - MEMS accelerometer
 - Embedded systems
 - Data acquisition
 - Computational power
 - Wireless communication
 - ISM band

© Stanford University

Wireless Communication

Plug-and-play sensors in wireless networks

© Crossbow

Generic Sensor Network

Vienna, January 26-27, 2004

- Distributed data processing
 - Local Pre-processing: FFT, features ...
 - Data reduction/compression (However, for modal analysis: at least cross-powers needed - references)
 - Local/global task distribution -> local modal analysis?
 - Data request data provision services -> Internet, LAN...
 - Use of Agent Technologies (LMS)
 - Specific Architectures Research
 - Berkeley: Tiny-OS, "Motes"
 - Karlsruhe: Smart-IT / Ubicomp
 - K.U.L. / V.U.B. in Belgium

—

Research Approach

- Test individual solutions on existing HW platform (cfr. ex.)
- Then prototype integration in platform to be decided

© LMS

 Change detection: current research at LMS: Model based methods:

- Modal analysis -> requires automation
- Statistical test -> requires good nominal model and test data [INRIA approach, flutter detection]
- Discrimination of environmental effects: importance of influence assessed, but approach to deal with it??

Vienna, January 26-27, 2004

- Modal analysis automation research at LMS
 - Robust and repeatable modal identification
 - Minimizing user interaction
 - Improved mathematical pole discrimination
 - I/O PolyMAX method: discrete-frequency domain method with superior stabilization behaviour
 - Now being researched for OMA application
 - Multi-patch data synthesis
 - Decision methodology:
 - Clustering
 - Rule-based
 - Neural Networks

Polymax I/O: Porsche 911 Targa Carrera 4 Fully Trimmed Car

Polymax I/O: Aircraft In-flight Testing

Stochastic Subspace Identification (BR) Z-24

Operational PolyMAX Z-24

Operational PolyMAX Multi-Patch Processing

- Method 1: Independent processing
 - Merging shapes by computing LS modal scaling factors between reference sensors
 - Averaging eigenfrequencies and damping
- Method 2: Combined processing, scale shapes afterwards
 - All half spectra are stacked (the reference sensors appear many times)
 - Only 1 set of modal parameters
 - Rescale shapes as in method 1
- Method 3: Combined processing, scale data on beforehand
 - Scale half spectra based on averaged spectra between the references
 - No need to scale shapes after identification

Z24-Bridge Mode 3

Z24-Bridge Mode 4

Challenges for structural monitoring and damage identification: conclusions

- Systems research on the level of
 - Smart sensors, heterogeneous sensors
 - Sensor networks, topologies, interfaces, buses
 - Wireless transmission & synchronization
 - Power consumption
- Analysis methods research:
 - Various detection and localization methods (Test & FE)
 - Polymax method seen as key technology for automation of OMA and hence for monitoring
 - Methods for environmental effect discrimination
 - Methods for decision
 - Local/global processing (reduction & autonomy)
- Leverage horizontal research results: Relevant input from Medical and AeroSpace research (IMEC, CSL, INRIA, LMS...)

Thank you !

AND - HAR