

SHM Introdu	ction and Overview	Section: 1
	Factors Leading to De	gradation
Factor #4	Overall deterioration and/or aging	
Consequences	Various detrimental effects on structural performance, both safety and serviceability	1
Result	Need for repair, rehabilitation, strengthening, or replacement	
ISIS Canada Educational Module 5		

1 – Acquisition of Data

(c) Transfer to Data Acquisition System (DAS)

Direct physical link between sensor and DAS

· Signals are transferred more slowly and are less secure

ISIS Canada Educational Module 5

least expensive and most commonNot practical for some large structures

Method 2 - Wireless transmission

Long lead wires increase signal "noise"

Use is expected to increase in the future

Method **1** - Lead wire

• More expensive

1 – Acquisition of Data

Section: 3

(d) Data Sampling and Collection

General Rule: The amount of data should not be so scanty as to jeopardize its usefulness, nor should it be so voluminous as to overwhelm interpretation

- Issues:

SHM

- · Number of sensors and data sampling rates
- Data sorting for onsite storage
- In some cases, large volumes of data

└─ Result:

· Efficient strategies needed for data sampling and storing

ISIS Canada Educational Module 5

www.samco.org

SHM

<u>SHM</u> 1 – Acquisition of Data
What is monitored, how, and why
Strain Strain: Intensity of deformation Magnitude and variation of strains can be examined to evaluate safety and integrity Measured using strain gauges • FOS, electrical, vibrating wire, etc.
Temperature Changes in temp. cause deformation • Thermal Expansion • Repeated cycles can cause damage • Temperature affects strain readings • Temp must be "removed" from strain data • Temp using TCs, TICs, thermistors
ISIS Canada Educational Module 5

shm 1 – Acqu	isition of Data	Section: 3
	What is monitored, ho	ow, and why?
Acceleration Loads compo • F and • Wides Measu	cause accelerations of structu nents and vice versa low is the structure resisting accele the resulting loads? pread use in highly seismic reg red using accelerometers	ral rations gions
Wind Speed and Pressure Wind loads can govern the design of long- span bridges and tall buildings • Record speed and pressure at various locations Measured using anemometers		long- us
ISIS Ca	nada Educational Module 5	

SAMCO Final Report 2006 F10-Teaching Materials

SAMCO

Intro SH	M 4 – Brillouin Scattering Sensors
	Fibre Optic Sensors
	These gauges in the developmental stage
	 Sophisticated optical techniques are used
	 Capable of measuring static strain profiles using a single optical fibre
	Characteristics:
	 Gauge length can vary from 15 cm to more than 1 km
	 Use for static monitoring only
	 Thermal and mechanical strains can be separated
	 Extensive signal processing and analysis is required
	Currently very expensive

	Distributed Sensing
	Specialized Sensing
Distributed sensi FBG and Brillouir	ng is a technique that is possible with n scattering sensors:
Allows continuous st	rain vs. position measurement over length of grating
Useful to measure:	Width of cracks
	Strain transfer in bonded joints
	Stress concentrations
 A gauge bonded in the presence of strain distribution is a series of subgratings 	
Spatial distribution o	f strains is obtained from individual measurements
	ISIS Canada Educational Module 5

Intro to SHM	Multiplexed Sensing	Section: 4
	Spe	cialized Sensing
In th inter (der	nis technique a large network of sensor rrogated by a single sensor reading de nodulation unit)	s is evice
1. Ser	ial Multiplexed: Several sensors distributed along a single op	ical fibre
2. Par	allel Multiplexed:	
	Sensors on separate fibres	

ISIS Canada Educational Module 5

SHM Oth	er Types of Sensors
LOAD	Load cells
DISPLACEMENT	Linear Variable Differential Transformer
	Linear Potentiometer
ACCELERATION	Accelerometers
TEMPERATURE	Thermocouples
	Integrated Temperature Circuits
STRAIN	Vibrating wire strain gauges
	Electrical resistance gauges
ISIS Canada Educational Module 5	

Intro to SHM	Static Field Testing) 1:5
1. Behaviou	Testing Categor	ries
Goal 📖	Study mechanics of structure and/or verify methods of analysis	
Testir	ng loads ≤ Maximum service loads	
Results 🛲	 How loads are distributed in structure No information on ability of structure to sustain loads 	
	ISIS Canada Educational Module 5	

Intro to SHM	Static Field Testing	Section: 5
2. Diagnosti	c Tests	esting Categories
Goal 📖	Determine interaction between vari components in structure (how they hinder each other)	ous help or
Essential	ly same method as Behaviou	r Tests
Results 🛲	Beneficial Interaction \rightarrow Use to Detrimental Interaction \rightarrow Repa	advantage air
	ISIS Canada Educational Module 5	

Intro to SHM	Static Field Testing	Section: 5
3. Proof Te	ests	Testing Categories
Goal mit	Induce " proof loads " to test the lo carrying capacity of the structure load until linear elastic limit	oad reached
Results 🔳	Proof load is maximum load the has withstood without suffering	e structure damage
CAUTION:	Extreme care should be taken during p Monitoring should be continuous durin Supporting analysis is required	proof testing g testing
	1010 Outrate Educational Madels 5	

SHM	Dynamic Field Testing	Section: 5
	Testi	ng Categories
 For testing 	g behaviour of structures subject to moving lo	ads
• In a typica \rightarrow A test \rightarrow Dynai	Il dynamic field test (for a bridge): vehicle travels across a "bump" on the bridge mic response of the bridge is excited, measured and a	inalyzed
Essentially	y four types of dynamic test:	
	1. Stress History Tests	
	2. Dynamic Amplification Tests	
	3. Ambient Tests	
	4. Pull-back Tests	
	1010 October Educational Marchael	

Intro to SHM	Dynamic Field Testing
3. An	nbient Vibration Tests
\vdash	Vibration characteristics of structure are examined based on vibrations due to wind, human activity, and traffic
	Changes in vibration characteristics of bridge may indicate damage (vibration based damage identification)
	Strategically-placed accelerometers measure vibration response of bridge, and resulting data is analyzed using complex algorithms
Proble Global Vibratio	ms: properties (vibration frequencies) have low sensitivity to local damage on characteristics affected by environment, temp. and boundaries

ISIS	Canada	Educational	Module	5
1010	ounduu	Lauoutional	mounter	-

Intro to SHM	Dynamic Field Testing		
4. Pu	Testing Categories		
	Usually conducted on bridges to determine response to lateral dynamic excitation		
	Use cables to pull structure laterally and suddenly release		
	Accelerometers used to monitor structure's response		
	Data analysis is similar to that required for an ambient vibration test		
ISIS Canada Educational Module 5			

Intro to Periodic Monitoring Section Testing Category Testing Category Testing Category

Periodic SHM conducted to investigate detrimental changes that might occur in a structure

Behaviour of structure is monitored at specified time intervals (days, weeks, months, years...)

ISIS Canada Educational Module 5

- Examples include periodic monitoring:
 - through ambient vibration;
 - through testing under moving traffic;
 - through static field testing;
 - of crack growth; and
 - of repairs

Case Studies

SHM

Intro to SHM	Case Studies	Section: 7
What is monitor	ed?	Confederation Bridge
Ice loads	Tiltmeters, accelerometers, id video monitoring, sonar	ce load panels,
Traffic loads	Strain gauges (conventional cameras	and FOS), video
Bridge deformations	mechanical, FOS, and vibrati gauges give short and long-to	ing wire strains erm deformations
Thermal effects	Thermocouples, vibrating wir pyranometers, cable tension	e strain gauges, linear transducers
Vibration/Dynamics	76 accelerometers, anemom displacement transducers	eters, dynamic
Rebar corrosion	Corrosion probes in the splas	sh zone
	ISIS Canada Educational Module 5	

SHM

SAMCO Final Report 2006 F10-Teaching Materials

Ca

Case Studies

Confederation Bridg

- · Consists of a central computer system and two data loggers
- Data loggers collect data and convert to engineering units
- · Data stored on-site for later transfer permanent retrieval site
- Data loggers operate at different speeds:
 - High speed \rightarrow Dynamic response due to ice floes, wind, traffic loading
 - Low $\mbox{speed} \rightarrow \mbox{Static response due to long term deflections,} potential damage, thermal effects$

Case Studies SHM Confederation Bride Data Acquisition System Central computer Loggers system on shore Conversion to Data engineering units Transfei Transfer at Carlton University Loggers operate in 2 modes: 1. Time-averaged mode 2. Event triggered burst mode IS Canada Educational M

ISIS Canada Educational Module 5

• FRP bars in deck slab and barrier walls

Intro to SHM	Case Studies	Section: 7
		Joffre Bridge
Bridge Specifics		
 Originally build in 19 	50	
Reconstructed in 19 concrete deck slab a	97 following severe deterio and girders	oration of the
• 2-lane, steel-concre	te composite structure	
5 spans of different	lengths vary between 26 ar	nd 37 m
Each span consists	of 5 girders at a spacing of	³ .7m
During reconstructio slab would be reinfo	n it was decided that a por rced with carbon FRP grid	tion of the deck

Intro SH	Case Studies
	Joffre Bridge
	A total of 180 sensors at various critical locations: - In deck slab - On steel girders Total of 44 FOS sensors : - 26 bonded Fabry-Perot FOSs on FRP grid - 6 Fabry-Perot sensors integrated into FRP grid - 2 Fabry-Perot sensors embedded in concrete - 3 Fabry-Perot strain fibre optic weldable sensors welded on girders - 3 FBG sensors bonded on the FRP grid - 1 Fabry-Perot and 1 FBG sensor bonded on an FRP bar for thermal strain monitoring
•	Vibrating wire and electrical resistance strain gauges also used

 Section 8: Civionics Specifications
 Section: 8

 What is Civionics?

 CIVIL ENGINEERING
 + ELECTRONICS

 =
 CIVILONICS

 Cooperation between engineers from various specific disciplines to form a new discipline within the field of civil engineering that refers to the applications of electronic systems in civil engineering applications

 ENSEMBLE
 Section: 8

	Civionics Specifications		
ISIS Canada has recently published "Civionics Specifications" - a manual providing best-practice guidelines for applying SHM			
Topics include:	Fibre optic sensors - Fibre Bragg grating sensors and readout units - Long gauge FOSs and readout units - Fabry-Perot FOSs and readout units		
	Wiring procedures and connections - Sensor cables - Conduits - Junction boxes - Cable termination - On-site control rooms		
	FOS installation procedures		
	SHM system and FOS suppliers		
ISIS Canada Educational Module 5			

- Provides the civil engineering community with a suite of options for monitoring, analysing, and understanding the health of our infrastructure systems
- Provide essential tools to engineers who must take steps to improve the sustainability of infrastructure systems

ISIS Canada Educational Module 5

Originally mounted on the dome in 1919

www.samco.org

SHM Detailed Example: Golden Boy

Monitoring Principles

Natural frequency can be determined as follows:

1. The moment of inertia, *I*, of a cylindrical solid rod of diameter, *d*, is:

$$I = \frac{\pi d^4}{64} = \frac{\pi (127)^4}{64} = 12769820 \text{ mm}^4$$

2. The cantilever is treated as a 2750 mm long steel (elastic modulus, E = 200 GPa) spring of stiffness, *K*, where *K* is calculated as:

ISIS Canada Educational Module 5

$$K = \frac{3EI}{L^3} = \frac{3(200000)(12769820)}{2750^3}$$

= 368.4 N/mm = 368400 kg/s²

EXEMPTE Solden Boy
Section: 11
Monitoring Principles
3. The mass, *M*, of the idealized single degree of freedom system can
be roughly approximated as the mass of the statue:

$$M = 1.52 \text{ Tons} = 1520 \text{ kg}$$
4. The theoretical first *natural trequency* of the idealized system is
given by the following:

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{M}} = \frac{1}{2\pi} \sqrt{\frac{368400}{1520}} = 2.48 \text{ Hz}$$
EXIST Canada Educational Module 5

200 D

Intro to SHM	Section 12: Additional Information	Section: 12
	Available from <u>www.isiscanada.com</u>	
IS	IS Design Manual No. 1: Installation, Use and Repair of FOS	
ISIS [Design Manual No. 2: Guidelines for Structural Health Monitori	ng
ISISI	EC Module 1: Mechanics Examples Incorporating FRP Materia	als
	ISIS EC Module 2: An Introduction to FRP Composites for Construction	
IS	IS EC Module 3: An introduction to FRP-Reinforced Concrete Structures	
ISIS E	C Module 4: An Introduction to FRP-Strengthening of Reinford Concrete Structures	ced .
	ISIS Canada Educational Module 5	